Causal Inference With Contagion and Latent Homophily Under Full Interference

Yufeng Wu, Rohit Bhattacharya {sw20,rb17}@williams.edu

ACIC 2024

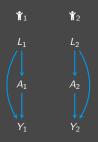
Williams College

¹Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

L = confounders; A = therapy sessions; Y = job satisfaction.

¹Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

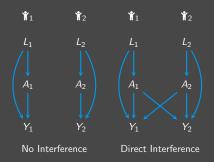
L =confounders; A =therapy sessions; Y =job satisfaction.



No Interference

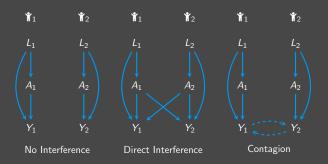
¹Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

Social Interactions Create Dependence in Data $^{ m 1}$

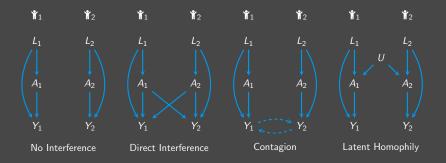


¹Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

Social Interactions Create Dependence in Data $^{ m 1}$

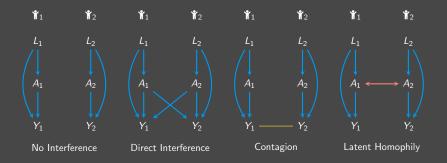


¹Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

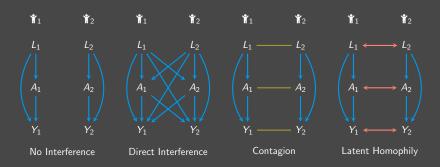


¹Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

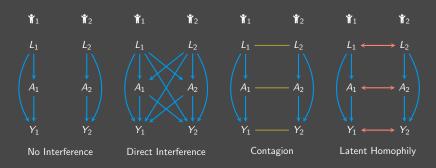
Social Interactions Create Dependence in Data $^{ m 2}$



²Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015



³Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015



[&]quot;Interference"

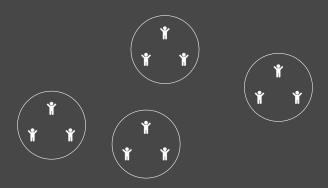
³Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

⁴Bhattacharya, Malinsky, and Shpitser 2020, Kang and Imbens 2016, Tchetgen and VanderWeele 2012, Hudgens and Halloran 2008

Partial Interference: assume i.i.d. "chunks" of data. 4

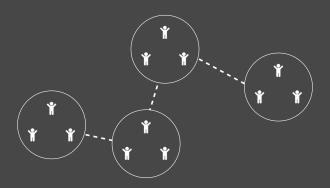
⁴Bhattacharya, Malinsky, and Shpitser 2020, Kang and Imbens 2016, Tchetgen and VanderWeele 2012, Hudgens and Halloran 2008

Partial Interference: assume i.i.d. "chunks" of data. 4



⁴Bhattacharya, Malinsky, and Shpitser 2020, Kang and Imbens 2016, Tchetgen and VanderWeele 2012, Hudgens and Halloran 2008

Partial interference does not hold in general!



This work focuses on **Full Interference** ⁵:

 $^{^5}$ Ogburn and VanderWeele 2014, Tchetgen Tchetgen, Fulcher, and Shpitser 2021

This work focuses on **Full Interference** ⁵:

Everyone may interfere with anyone else in the network.

 $^{^5}$ Ogburn and VanderWeele 2014, Tchetgen Tchetgen, Fulcher, and Shpitser 2021

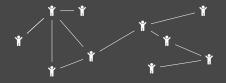
This work focuses on **Full Interference** ⁵:

- Everyone may interfere with anyone else in the network.
- No restrictions on the structure of the network.

⁵Ogburn and VanderWeele 2014, Tchetgen Tchetgen, Fulcher, and Shpitser 2021

This work focuses on **Full Interference** ⁵:

- Everyone may interfere with anyone else in the network.
- ▶ No restrictions on the structure of the network.



⁵Ogburn and VanderWeele 2014, Tchetgen Tchetgen, Fulcher, and Shpitser 2021

This work focuses on **Full Interference** ⁵:

- Everyone may interfere with anyone else in the network.
- ▶ No restrictions on the structure of the network.



Usually assume **parameter-sharing**: $p(L_i, L_{\mathsf{nb}(i)}; \theta)$ is shared by everyone in the network.

⁵Ogburn and VanderWeele 2014, Tchetgen Tchetgen, Fulcher, and Shpitser 2021

Auto-g computation⁶:

► can estimate causal effects under full interference.

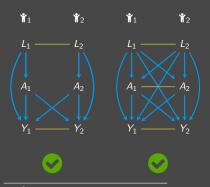
⁶Tchetgen Tchetgen, Fulcher, and Shpitser 2021

Auto-g computation⁶:

- can estimate causal effects under full interference.
- ▶ allows for direct interference (\rightarrow) and contagion (-), but assumes no latent homophily (\leftrightarrow) .

Auto-g computation⁶:

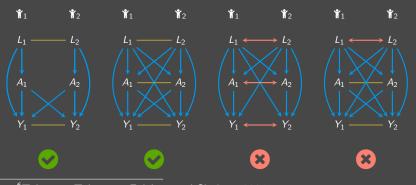
- can estimate causal effects under full interference.
- ▶ allows for direct interference (\rightarrow) and contagion (-), but assumes no latent homophily (\leftrightarrow) .



⁶Tchetgen Tchetgen, Fulcher, and Shpitser 2021

Auto-g computation⁶:

- can estimate causal effects under full interference.
- ▶ allows for direct interference (\rightarrow) and contagion (-), but assumes no latent homophily (\leftrightarrow) .



⁶Tchetgen Tchetgen, Fulcher, and Shpitser 2021

Causal Inference for Social Network Data 7.

allows for direct interference and latent homophily between individuals.

Open Problem

1. A method that simultaneously accounts for all three mechanisms: direct interference (\rightarrow) , contagion (-), and latent homophily (\leftrightarrow) .

Open Problem

- 1. A method that simultaneously accounts for all three mechanisms: direct interference (\rightarrow) , contagion (-), and latent homophily (\leftrightarrow) .
- 2. The assumptions of auto-g relies on prior knowledge & belief.
 - We want a test to distinguish between interference due to contagion (-) and latent homophily (\leftrightarrow) .

Open Problem

- 1. A method that simultaneously accounts for all three mechanisms: direct interference (\rightarrow) , contagion (-), and latent homophily (\leftrightarrow) .
- 2. The assumptions of auto-g relies on prior knowledge & belief.

We want a test to distinguish between interference due to contagion (-) and latent homophily (\leftrightarrow) .

Intuition

Claim: contagion vs. latent homophily is distinguishable using an independence test.

Intuition

Claim: contagion vs. latent homophily is distinguishable using an independence test.

Undirected Edge:

$$Y_1 \longrightarrow Y_2 \longrightarrow Y_3$$

$$Y_1 \not\perp \!\!\! \perp Y_3$$
 and $Y_1 \perp \!\!\! \perp Y_3 \mid Y_2$

Intuition

Claim: contagion vs. latent homophily is distinguishable using an independence test.

Undirected Edge:

$$Y_1 \longrightarrow Y_2 \longrightarrow Y_3$$

$$Y_1 \perp \!\!\! \perp Y_3$$
 and $Y_1 \perp \!\!\! \perp Y_3 \mid Y_2$

Bidirected Edge:

$$Y_1 \longleftrightarrow Y_2 \longleftrightarrow Y_3$$

$$Y_1 \perp \!\!\! \perp Y_3$$
 and $Y_1 \not\perp \!\!\! \perp Y_3 \mid Y_2$

How To Get i.i.d. Samples for Independence Tests

Intuition: further away in network \approx less dependent.

How To Get i.i.d. Samples for Independence Tests

Intuition: further away in network \approx less dependent.

Our Proposed Test

Step 1: find a 5-hop independent set \mathcal{I} from the network.

Our Proposed Test

Step 2: for each person in \mathcal{I} , collect information on their neighbors and their 2nd-order neighbors (i.e., neighbors' neighbors).

Our Proposed Test

Step 3: Is $person_i \perp \!\!\! \perp 2nd$ -order $nb(i) \mid nb(i)$?

Our Proposed Test

Step 3: Is person_i \perp 2nd-order nb(i) | nb(i) ?

Likelihood ratio test:

- ▶ Model 1: $person_i \sim nb(i)$
- ► Model 2: $person_i \sim nb(i) + 2nd$ -order nb(i)

Our Proposed Test

```
Step 3: Is person<sub>i</sub> \perp 2nd-order nb(i) | nb(i) ?
```

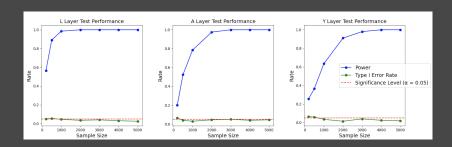
Likelihood ratio test:

- ▶ Model 1: person_i \sim nb(i)
- ▶ Model 2: $person_i \sim nb(i) + 2nd$ -order nb(i)

```
If \perp \!\!\! \perp, conclude contagion (-).
```

If $\not\perp$, conclude latent homophily (\leftrightarrow) .

Evaluating Our Test



Recap

- A causal effect estimation method that allows for three types
 of dependence mechanisms: direct interference (→),
 contagion (−), and latent homophily (↔).
- The assumptions of auto-g relies on prior knowledge & belief.
 We want a test to distinguish between interference due to contagion (–) and latent homophily (↔).

Why do we even need a new method when latent homophily (\leftrightarrow) is present?

⁸Lauritzen and Richardson 2002

Why do we even need a new method when latent homophily (\leftrightarrow) is present?

Undirected Edge:

$$L_1$$
 — L_2 — L_3

Gibbs factors ⁸: $p(L_1 \mid L_2)$, $p(L_2 \mid L_1, L_3)$, and $p(L_3 \mid L_2)$

⁸Lauritzen and Richardson 2002

Why do we even need a new method when latent homophily (\leftrightarrow) is present?

Undirected Edge:

$$L_1$$
 — L_2 — L_3

Gibbs factors ⁸: $p(L_1 \mid L_2)$, $p(L_2 \mid L_1, L_3)$, and $p(L_3 \mid L_2)$

Bidirected Edge:

$$L_1 \longleftrightarrow L_2 \longleftrightarrow L_3$$

$$p(L_1,L_2,L_3)$$

⁸Lauritzen and Richardson 2002

Why do we even need a new method when latent homophily (\leftrightarrow) is present?

Undirected Edge:

$$L_1$$
 — L_2 — L_3

Gibbs factors ⁸: $p(L_1 \mid L_2)$, $p(L_2 \mid L_1, L_3)$, and $p(L_3 \mid L_2)$

Bidirected Edge:

$$\begin{array}{ccc} \mathsf{Cov}(1,2) & \mathsf{Cov}(2,3) \\ \mathsf{L}_1 & \longleftrightarrow & \mathsf{L}_2 & \longleftrightarrow & \mathsf{L}_3 \end{array}$$

$$p(L_1, L_2, L_3) \sim MVN(\mu, \Sigma)$$

⁸Lauritzen and Richardson 2002

Target for Causal Effect Estimation

Unit potential outcome expectation⁹ for every $i \in V$:

$$\mathbb{E}[Y_i(a)] = \sum_{l} \mathbb{E}[Y_i \mid A = a, L] \times p(L)$$

⁹Tchetgen Tchetgen, Fulcher, and Shpitser 2021

Target for Causal Effect Estimation

Unit potential outcome expectation⁹ for every $i \in V$:

$$\mathbb{E}[Y_i(a)] = \sum_{l} \mathbb{E}[Y_i \mid A = a, L] \times p(L)$$

Other targets such as average direct effect & average overall effect can be derived from $\mathbb{E}[Y_i(a)]$.

⁹Tchetgen Tchetgen, Fulcher, and Shpitser 2021

Target for Causal Effect Estimation

Unit potential outcome expectation⁹ for every $i \in V$:

$$\mathbb{E}[Y_i(a)] = \sum_{l} \mathbb{E}[Y_i \mid A = a, L] \times p(L)$$

Other targets such as average direct effect & average overall effect can be derived from $\mathbb{E}[Y_i(a)]$.

⁹Tchetgen Tchetgen, Fulcher, and Shpitser 2021

Cannot estimate using empirical distribution under interference.

¹⁰Drton, Eichler, and Richardson 2009

Cannot estimate using empirical distribution under interference.

Contagion (-): use auto-g computation.

¹⁰Drton, Eichler, and Richardson 2009

Cannot estimate using empirical distribution under interference.

Contagion (-): use auto-g computation.

Latent Homophily (\leftrightarrow) :

1. Pre-processing: select triplets from the network s.t. none of these triplets are connected.

¹⁰Drton, Eichler, and Richardson 2009

Cannot estimate using empirical distribution under interference.

Contagion (-): use auto-g computation.

Latent Homophily (\leftrightarrow) :

1. Pre-processing: select triplets from the network s.t. none of these triplets are connected.

2. Assume $\overline{p(L)} \sim MVN$ & Parameter-sharing.

¹⁰Drton, Eichler, and Richardson 2009

Cannot estimate using empirical distribution under interference.

Contagion (-): use auto-g computation.

Latent Homophily (\leftrightarrow) :

1. Pre-processing: select triplets from the network s.t. none of these triplets are connected.

- 2. Assume $p(L) \sim MVN$ & Parameter-sharing.
- 3. Apply Residual Iterative Conditional Fitting (RICF) 10 : $\widehat{\mu}$, $\widehat{\Sigma}$.

¹⁰Drton, Eichler, and Richardson 2009

Task 2: Estimate $\mathbb{E}[Y_i \mid A, L]$

Task 2: Estimate $\mathbb{E}[Y_i \mid A, L]$

Contagion (-): use auto-g computation.

Task 2: Estimate $\mathbb{E}[Y_i \mid A, L]$

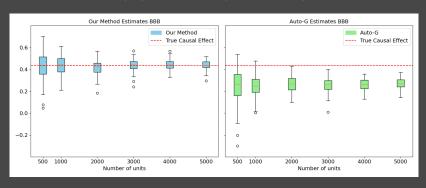
Contagion (-): use auto-g computation.

Latent Homophily (\leftrightarrow) :

Directly estimate $\mathbb{E}[Y_i \mid A, L]$ using data from people in an independent set of the network.

Latent homophily (\leftrightarrow) in all three (L, A, and Y) layers.

Latent homophily (\leftrightarrow) in all three (L, A, and Y) layers.

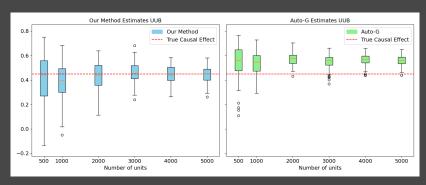


Contagion (-) in the L and A layers.

Latent homophily (\leftrightarrow) in the Y layers.

Contagion (-) in the L and A layers.

Latent homophily (\leftrightarrow) in the Y layers.



References I

- Bhattacharya, Rohit, Daniel Malinsky, and Ilya Shpitser (2020). "Causal inference under interference and network uncertainty". In: *Uncertainty in Artificial Intelligence*. PMLR, pp. 1028–1038.
- Drton, Mathias, Michael Eichler, and Thomas S Richardson (2009). "Computing Maximum Likelihood Estimates in Recursive Linear Models with Correlated Errors.". In: Journal of Machine Learning Research 10.10.
- Hudgens, Michael G and M Elizabeth Halloran (2008). "Toward causal inference with interference". In: Journal of the American Statistical Association 103.482, pp. 832–842.
- Kang, Hyunseung and Guido Imbens (2016). "Peer encouragement designs in causal inference with partial interference and identification of local average network effects". In: arXiv preprint arXiv:1609.04464.
- Lauritzen, Steffen L and Thomas S Richardson (2002). "Chain graph models and their causal interpretations". In: Journal of the Royal Statistical Society Series B: Statistical Methodology 64.3, pp. 321–348
- Ogburn, Elizabeth L and Tyler J VanderWeele (2014). "Causal diagrams for interference". In.

References II

- Ogburn, Elizabeth L et al. (2024). "Causal inference for social network data". In: *Journal of the American Statistical Association* 119.545, pp. 597–611.
- Shalizi, Cosma Rohilla and Andrew C Thomas (2011). "Homophily and contagion are generically confounded in observational social network studies". In: Sociological methods & research 40.2, pp. 211–239.
- Shpitser, Ilya (2015). "Segregated graphs and marginals of chain graph models". In: Advances in neural information processing systems 28.
- Tchetgen, Eric J Tchetgen and Tyler J VanderWeele (2012). "On causal inference in the presence of interference". In: Statistical methods in medical research 21.1, pp. 55–75.
- Tchetgen Tchetgen, Eric J, Isabel R Fulcher, and Ilya Shpitser (2021). "Auto-g-computation of causal effects on a network". In: Journal of the American Statistical Association 116.534, pp. 833–844.

Thanks!

Questions?