Causal Inference With Contagion and Latent Homophily Under Full Interference

Yufeng Wu Advised by Prof. Rohit Bhattacharya

May 13th, 2024

Focus of This Thesis

Create new methods that can estimate causal effects from (social) network data.

Focus of This Thesis

Create new methods that can estimate causal effects from (social) network data.

"Interference": considers how different rows of data depend on each other in a given dataset.

Many causal questions we ask are rooted in social interactions.

Many causal questions we ask are rooted in social interactions.

► How effective can flu vaccine protect ourselves and people around us?

Many causal questions we ask are rooted in social interactions.

- ► How effective can flu vaccine protect ourselves and people around us?
- ▶ If I gain some weight, will it cause my friends to gain weight too?

Many causal questions we ask are rooted in social interactions.

- ► How effective can flu vaccine protect ourselves and people around us?
- If I gain some weight, will it cause my friends to gain weight too?

[HTML] The spread of obesity in a large social network over 32 years

NA Christakis, JH Fowler - New England journal of medicine, 2007 - Mass Medical Soc Background The prevalence of obesity has increased substantially over the past 30 years. We performed a quantitative analysis of the nature and extent of the person-to-person spread of obesity as a possible factor contributing to the obesity epidemic. Methods We evaluated a densely interconnected social network of 12.067 people assessed repeatedly from 1971 to 2003 as part of the Framingham Heart Study. The body-mass index was available for all subjects. We used longitudinal statistical models to examine whether weight ... ☆ Save 50 Cite Cited by 7080 Related articles All 58 versions Web of Science: 3013 >>>

i.i.d. = independent and identically distributed

i.i.d. = independent and identically distributed

- People are similar.
- ▶ Information from one person cannot predict information of others.

i.i.d. = independent and identically distributed

- People are similar.
- ► Information from one person cannot predict information of others. (almost never true in social networks!)

Dependent Data Complicates Causal Inference

Dependent Data Complicates Causal Inference

► High variance: estimations are less accurate, but still correct on average (not always a problem.)

Dependent Data Complicates Causal Inference

- ► High variance: estimations are less accurate, but still correct on average (not always a problem.)
- ▶ Bias: incorrect estimation, even with infinite data. (always a problem!)

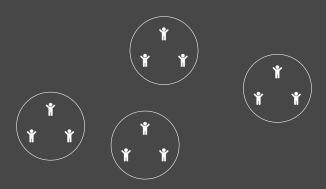
A Convenient Assumption: Partial Interference ¹

Assume i.i.d. "chunks" of data.

¹Bhattacharya, Malinsky, and Shpitser 2020, Kang and Imbens 2016, Tchetgen and VanderWeele 2012, Hudgens and Halloran 2008

A Convenient Assumption: Partial Interference ¹

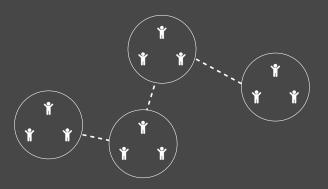
Assume i.i.d. "chunks" of data.



¹Bhattacharya, Malinsky, and Shpitser 2020, Kang and Imbens 2016, Tchetgen and VanderWeele 2012, Hudgens and Halloran 2008

A Convenient Assumption: Partial Interference ²

This assumption does not hold in general!



²Bhattacharya, Malinsky, and Shpitser 2020, Kang and Imbens 2016, Tchetgen and VanderWeele 2012, Hudgens and Halloran 2008

The More General Setting: Full Interference ³

Everyone may interfere with anyone else in the network.

³Tchetgen Tchetgen, Fulcher, and Shpitser 2021, Tchetgen and VanderWeele 2012

The More General Setting: Full Interference ³

Everyone may interfere with anyone else in the network.

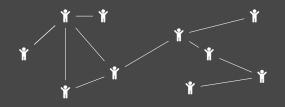
No restrictions on the structure of the network.

³Tchetgen Tchetgen, Fulcher, and Shpitser 2021, Tchetgen and VanderWeele 2012

The More General Setting: Full Interference ³

Everyone may interfere with anyone else in the network.

No restrictions on the structure of the network.

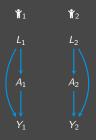


³Tchetgen Tchetgen, Fulcher, and Shpitser 2021, Tchetgen and VanderWeele 2012

⁴Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

⁴Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

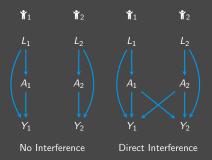
L =confounders; A =therapy sessions; Y =job satisfaction.



No Interference

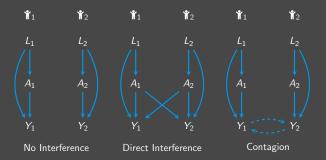
⁴Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

L = confounders; A = therapy sessions; Y = job satisfaction.

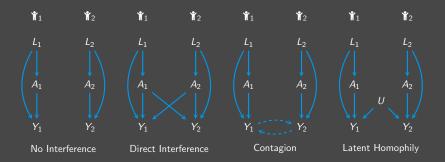


⁴Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

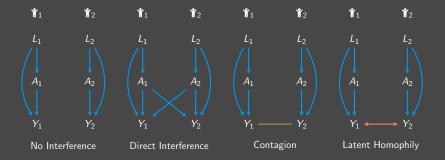
L = confounders; A = therapy sessions; Y = job satisfaction.



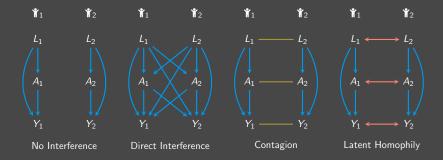
⁴Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015



⁴Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015



⁵Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015



⁶Shalizi and Thomas 2011, Ogburn and VanderWeele 2014, Lauritzen and Richardson 2002, Shpitser 2015

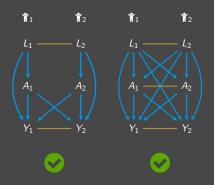
Previous Work (1)

Auto-g computation⁷: can estimate causal effects under full interference, as long as there is no latent homophily (\leftrightarrow) .

⁷Tchetgen Tchetgen, Fulcher, and Shpitser 2021

Previous Work (1)

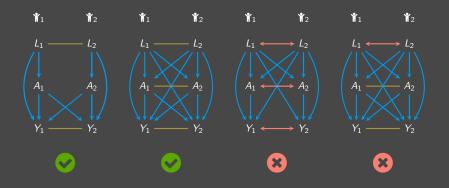
Auto-g computation⁷: can estimate causal effects under full interference, as long as there is no latent homophily (\leftrightarrow) .



⁷Tchetgen Tchetgen, Fulcher, and Shpitser 2021

Previous Work (1)

Auto-g computation⁷: can estimate causal effects under full interference, as long as there is no latent homophily (\leftrightarrow) .



⁷Tchetgen Tchetgen, Fulcher, and Shpitser 2021

Previous Work (2)

Causal Inference for Social Network Data 8.

allows for direct interference and latent homophily between individuals.

Open Problems

1. A causal effect estimation method that simultaneously accounts for all three mechanisms:

direct interference (\rightarrow) , contagion (-), and latent homophily (\leftrightarrow) .

Open Problems

1. A causal effect estimation method that simultaneously accounts for all three mechanisms:

direct interference (\rightarrow) , contagion (-), and latent homophily (\leftrightarrow) .

2. Current methods rely on prior knowledge & belief.

We want a test to distinguish between contagion (-) and latent homophily (\leftrightarrow) .

Open Problems

1. A causal effect estimation method that simultaneously accounts for all three mechanisms:

direct interference (\rightarrow) , contagion (-), and latent homophily (\leftrightarrow) .

2. Current methods rely on prior knowledge & belief.

We want a test to distinguish between contagion (-) and latent homophily (\leftrightarrow) .

Intuition

Claim: contagion vs. latent homophily is distinguishable using an independence test.

Claim: contagion vs. latent homophily is distinguishable using an independence test.

Undirected Edge:

$$Y_1 \longrightarrow Y_2 \longrightarrow Y_3$$

$$Y_1 \not\perp \!\!\! \perp Y_3$$
 and $Y_1 \perp \!\!\! \perp Y_3 \mid Y_2$

Claim: contagion vs. latent homophily is distinguishable using an independence test.

Undirected Edge:

$$Y_1 \longrightarrow Y_2 \longrightarrow Y_3$$

$$Y_1 \not\perp \!\!\! \perp Y_3$$
 and $Y_1 \perp \!\!\! \perp Y_3 \mid Y_2$

Bidirected Edge:

$$Y_1 \longleftrightarrow Y_2 \longleftrightarrow Y_3$$

$$Y_1 \perp \!\!\! \perp Y_3$$
 and $Y_1 \not\perp \!\!\! \perp Y_3 \mid Y_2$



Intuition: further away in network \approx less dependent.

Intuition: further away in network \approx less dependent.

Independent Set: a set of vertices in a graph, no two of which are adjacent.

Independent Set: a set of vertices in a graph, no two of which are adjacent.

Independent Set: a set of vertices in a graph, no two of which are adjacent.

General version: "k-hop" independent set.

Step 1: find a maximal 5-hop independent set $\ensuremath{\mathcal{I}}$ from the network.

Step 2: for each person in \mathcal{I} , collect information on their neighbors and their 2nd-order neighbors (i.e., neighbors' neighbors).

Step 3: Is $person_i \perp \!\!\! \perp 2nd$ -order $nb(i) \mid nb(i)$?

Step 3: Is person_i \perp 2nd-order nb(i) | nb(i) ?

Likelihood ratio test:

- ▶ Model 1: $person_i \sim nb(i)$
- ► Model 2: $person_i \sim \overline{nb(i) + 2nd\text{-order } nb(i)}$

Step 3: Is person_i \perp 2nd-order nb(i) | nb(i) ?

Likelihood ratio test:

- ▶ Model 1: person_i \sim nb(i)
- ► Model 2: $person_i \sim nb(i) + 2nd$ -order nb(i)

If $\perp \!\!\! \perp$, conclude contagion (–).

If $\not\perp$, conclude latent homophily (\leftrightarrow) .

Power: how often it correctly detects homophily.

Power: how often it correctly detects homophily.

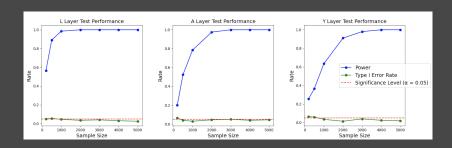
Type 1 Error Rate: how often it incorrectly concludes contagion as homophily.

Power: how often it correctly detects homophily.

Approach 1 as sample size increases.

Type 1 Error Rate: how often it incorrectly concludes contagion as homophily.

Less than significance level α .



Recap

1. A causal effect estimation method that simultaneously accounts for all three mechanisms:

```
direct interference (\rightarrow), contagion (-), and latent homophily (\leftrightarrow).
```

2. Current methods rely on prior knowledge & belief.

We want a test to distinguish between contagion (-) and latent homophily (\leftrightarrow) .

Why do we even need a new method when latent homophily (\leftrightarrow) is present?

⁹Lauritzen and Richardson 2002

Why do we even need a new method when latent homophily (\leftrightarrow) is present?

Undirected Edge:

$$L_1$$
 — L_2 — L_3

Gibbs factors ⁹: $p(L_1 \mid L_2)$, $p(L_2 \mid L_1, L_3)$, and $p(L_3 \mid L_2)$

⁹Lauritzen and Richardson 2002

Why do we even need a new method when latent homophily (\leftrightarrow) is present?

Undirected Edge:

$$L_1$$
 — L_2 — L_3

Gibbs factors ⁹: $p(L_1 \mid L_2)$, $p(L_2 \mid L_1, L_3)$, and $p(L_3 \mid L_2)$

Bidirected Edge:

$$L_1 \longleftrightarrow L_2 \longleftrightarrow L_3$$

$$p(L_1,L_2,L_3)$$

⁹Lauritzen and Richardson 2002

Why do we even need a new method when latent homophily (\leftrightarrow) is present?

Undirected Edge:

$$L_1$$
 — L_2 — L_3

Gibbs factors ⁹: $p(L_1 \mid L_2)$, $p(L_2 \mid L_1, L_3)$, and $p(L_3 \mid L_2)$

Bidirected Edge:

$$\begin{array}{ccc} \mathsf{Cov}(1,2) & \mathsf{Cov}(2,3) \\ L_1 & \longleftarrow & L_2 & \longleftarrow & L_3 \end{array}$$

$$p(L_1, L_2, L_3) \sim MVN(\mu, \Sigma)$$

⁹Lauritzen and Richardson 2002

¹⁰Drton, Eichler, and Richardson 2009 ¹¹Moon 1996

If we have i.i.d. samples from $p(L_1, L_2, L_3) \sim MVN(\mu, \Sigma)$:

$$L_1 \longleftrightarrow L_2 \longleftrightarrow L_3$$

¹⁰Drton, Eichler, and Richardson 2009

¹¹Moon 1996

If we have i.i.d. samples from $p(L_1, L_2, L_3) \sim MVN(\mu, \Sigma)$:

$$L_1 \longleftrightarrow L_2 \longleftrightarrow L_3$$

Residual Iterative Conditional Fitting (RICF). 10

Similar to the Expectation Maximization (EM) algorithm ¹¹.

¹⁰Drton, Eichler, and Richardson 2009

¹¹Moon 1996

If we have i.i.d. samples from $p(L_1, L_2, L_3) \sim MVN(\mu, \Sigma)$:

$$L_1 \longleftrightarrow L_2 \longleftrightarrow L_3$$

Residual Iterative Conditional Fitting (RICF). 10

Similar to the Expectation Maximization (EM) algorithm 11 .

Iteratively finds the best-fitting $\widehat{\mu}$ and $\widehat{\Sigma}$ for our samples.

¹⁰Drton, Eichler, and Richardson 2009

¹¹Moon 1996

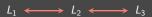
Able to estimate network causal effects when latent homophily (\leftrightarrow) is present.

Step 1: find connected triplets s.t. no one in one triplet is adjacent to anyone in another triplet.

Step 1: find connected triplets s.t. no one in one triplet is adjacent to anyone in another triplet.

Step 2: collect data from these triplets

Step 2: collect data from these triplets, which can be seen as i.i.d. samples from the following graph:



$$L_1 \longleftrightarrow L_2 \longleftrightarrow L_3$$

Step 3: estimate $\widehat{\mu}$ and $\widehat{\Sigma}$ using RICF.

$$L_1 \longleftrightarrow L_2 \longleftrightarrow L_3$$

Step 3: estimate $\widehat{\mu}$ and $\widehat{\Sigma}$ using RICF.

 $\mathsf{MVN}(\widehat{\mu}, \widehat{\Sigma}) \approx \mathsf{the DGP} \ \mathsf{of bidirected edges} \ (\leftrightarrow).$

We now can recover all kinds of DGPs under full interference:

We now can recover all kinds of DGPs under full interference:

✓ bidirected edges (↔): use thesis method

We now can recover all kinds of DGPs under full interference:

- ✓ bidirected edges (↔): use thesis method
- ✓ undirected edges (–): use auto-g method

New Method

We now can recover all kinds of DGPs under full interference:

- \checkmark bidirected edges (\leftrightarrow) : use thesis method
- ✓ undirected edges (–): use auto-g method
- \checkmark directed edges (\rightarrow) : use auto-g method

A DGP is like a computer program:

- 1. L receives a value;
- 2. $A \leftarrow f_A(L) + \text{noise}$;
- 3. $Y \leftarrow f_Y(A, L) + \text{noise};$

A DGP is like a computer program:

- 1. L receives a value;
- 2. $A \leftarrow f_A(L) + \text{noise}$;
- 3. $Y \leftarrow f_Y(A, L) + \text{noise}$;

- 1. L receives a value;
- 2. $A \leftarrow 1$;
- 3. $Y \leftarrow f_Y(1, L) + \text{noise};$

A DGP is like a computer program:

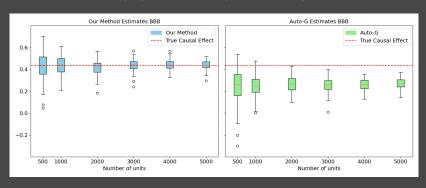
- 1. L receives a value;
- 2. $A \leftarrow f_A(L) + \text{noise}$;
- 3. $Y \leftarrow f_Y(A, L) + \text{noise}$;

- 1. L receives a value;
- 2. $A \leftarrow 1$;
- 3. $Y \leftarrow f_Y(1, L) + \text{noise};$

Similar for undirected (-) and bidirected (\leftrightarrow) edges.

Latent homophily (\leftrightarrow) in all three (L, A, and Y) layers.

Latent homophily (\leftrightarrow) in all three (L, A, and Y) layers.

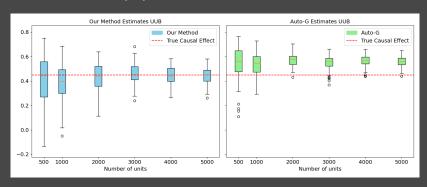


Contagion (-) in the L and A layers.

Latent homophily (\leftrightarrow) in the Y layers.

Contagion (-) in the L and A layers.

Latent homophily (\leftrightarrow) in the Y layers.



Potential Broader Impact

New method for causal inference in network data with a more flexible set of assumptions:

▶ New opportunities for application of causal inference.

Potential Broader Impact

New method for causal inference in network data with a more flexible set of assumptions:

▶ New opportunities for application of causal inference.

Tests to distinguish contagion vs. latent homophily:

- ► Tool to verify model assumptions.
- ► Tool for causal discovery.

L = coursework & career preparation

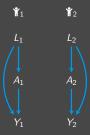
A =screen time

Y = sleep disorder

L =coursework & career preparation

A =screen time

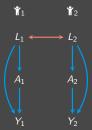
Y =sleep disorder



L =coursework & career preparation

A = screen time

Y =sleep disorder

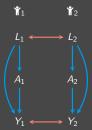


 $L_1 \leftrightarrow L_2$: similar values, interests, and goals

L =coursework & career preparation

A =screen time

Y =sleep disorder



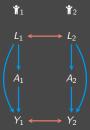
 $L_1 \leftrightarrow L_2$: similar values, interests, and goals

 $Y_1 \leftrightarrow Y_2$: similar lifestyle (e.g. diet, exercise, etc.)

L = coursework & career preparation

A =screen time

Y =sleep disorder

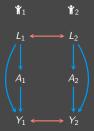


Before: can't apply the auto-g method

L = coursework & career preparation

A =screen time

Y = sleep disorder



Before: can't apply the auto-g method

Thesis method:

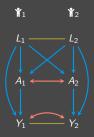
- hypothesis tests to confirm our model set up
- ▶ identify and estimate network causal effects

Limitation and Open Problems for Future Work

Contagion (–) and latent homophily (\leftrightarrow) cannot exist between two variables at the same time.

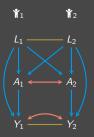
Limitation and Open Problems for Future Work

Contagion (–) and latent homophily (\leftrightarrow) cannot exist between two variables at the same time.



Limitation and Open Problems for Future Work

Contagion (–) and latent homophily (\leftrightarrow) cannot exist between two variables at the same time.



Can certainly happen in real life: e.g. Y =stress level.

▶ My advisor Prof. Rohit Bhattacharya

- ► My advisor Prof. Rohit Bhattacharya
- ► Second reader Prof. Sam McCauley

- My advisor Prof. Rohit Bhattacharya
- ► Second reader Prof. Sam McCauley
- ► Prof. Aaron Williams

Acknowledgement¹

- My advisor Prof. Rohit Bhattacharya
- ► Second reader Prof. Sam McCauley
- ▶ Prof. Aaron Williams
- ► Limia and Brownswiss

- My advisor Prof. Rohit Bhattacharya
- ► Second reader Prof. Sam McCauley
- ▶ Prof. Aaron Williams
- ► Limia and Brownswiss
- Family and friends

References I

- Bhattacharya, Rohit, Daniel Malinsky, and Ilya Shpitser (2020). "Causal inference under interference and network uncertainty". In: *Uncertainty in Artificial Intelligence*. PMLR, pp. 1028–1038.
- Drton, Mathias, Michael Eichler, and Thomas S Richardson (2009). "Computing Maximum Likelihood Estimates in Recursive Linear Models with Correlated Errors.". In: Journal of Machine Learning Research 10.10.
- Hudgens, Michael G and M Elizabeth Halloran (2008). "Toward causal inference with interference". In: Journal of the American Statistical Association 103.482, pp. 832–842.
- Kang, Hyunseung and Guido Imbens (2016). "Peer encouragement designs in causal inference with partial interference and identification of local average network effects". In: arXiv preprint arXiv:1609.04464.
- Lauritzen, Steffen L and Thomas S Richardson (2002). "Chain graph models and their causal interpretations". In: Journal of the Royal Statistical Society Series B: Statistical Methodology 64.3, pp. 321–348
- Moon, Todd K (1996). "The expectation-maximization algorithm". In: IEEE Signal processing magazine 13.6, pp. 47–60.

References II

- Ogburn, Elizabeth L and Tyler J VanderWeele (2014). "Causal diagrams for interference". In.
- Shalizi, Cosma Rohilla and Andrew C Thomas (2011). "Homophily and contagion are generically confounded in observational social network studies". In: Sociological methods & research 40.2, pp. 211–239.
- Shpitser, Ilya (2015). "Segregated graphs and marginals of chain graph models". In: Advances in neural information processing systems 28.
- Tchetgen, Eric J Tchetgen and Tyler J VanderWeele (2012). "On causal inference in the presence of interference". In: Statistical methods in medical research 21.1, pp. 55–75.
- Tchetgen Tchetgen, Eric J, Isabel R Fulcher, and Ilya Shpitser (2021). "Auto-g-computation of causal effects on a network". In: Journal of the American Statistical Association 116.534, pp. 833–844.

Thanks!

Questions?